Abstract

Metachronal waves are ubiquitous in propulsive and fluid transport systems across many different scales and morphologies in the biological world. Tomopterids are a soft-bodied, holopelagic polychaete that use metachrony with their flexible, gelatinous parapodia to deftly navigate the midwater ocean column that they inhabit. In the following study, we develop a three-dimensional, fluid-structure interaction model of a tomopterid parapodium to explore the emergent metachronal waves formed from the interplay of passive body elasticity, active muscular tension, and hydrodynamic forces. After introducing our model, we examine the effects that varying material properties have on the stroke of an individual parapodium. We then explore the temporal dynamics when multiple parapodia are placed sequentially and how differences in the phase can alter the collective kinematics and resulting flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.