Abstract

Topological superconductors (TSCs) are an exotic field due to the existence of Majorana zero-modes (MZM) in the edge states that obey non-Abelian statistics and can be used to implement topological quantum computations, especially for two-dimensional (2D) materials. Here we predict manganese diboride (Mn2B2) as an intrinsic 2D anti-ferromagnetic (AFM) TSC based on the magnetic and electronic structures of Mn and B atoms. Once Mn2B2 ML enters a superconducting state, MZM will be induced by the spin-polarized helical gapless edge states. The Z2 topological non-trivial properties are confirmed by Wannier charge centers (WCC) and the platform of the spin Hall conductivity near the Fermi level. Phonon-electron coupling (EPC) implies s-wave superconductivity and the critical temperature (Tc) is 6.79 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call