Abstract

The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group’s step length, whereas the type of memory had the highest impact on a group’s path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.

Highlights

  • Many species face the need to find resources that vary both spatially and temporally, and observed patterns of movement often suggest complex behavior to face these challenges

  • By defining individual level behavior and examining group level movement we were able to validate and compare between behavior models using different assumptions. We apply this approach to the red colobus monkey (Procolobus rufomitratus) where we examined simulated agents (12 types), representing alternative hypotheses, each with varying social interactions, abilities to retain spatial information, and different methods of using this spatial memory (Figure 1)

  • By defining various types of simulated primates, we were able to test for the general effects of social rules, memory type, and memory retention, giving insight into the processes behind primate movement patterns

Read more

Summary

Introduction

Many species face the need to find resources that vary both spatially and temporally, and observed patterns of movement often suggest complex behavior to face these challenges. The mechanisms and processes driving these movement patterns have been a topic of considerable debate, suggesting mechanisms such as spatial memory, internal time measures, communication, and reliance on conspecifics [1,2,3]. These types of questions can, and are being, examined with many different approaches, and largely focus on defining how, why, and where individuals move [4]. Simulation models, which attempt to represent individuals, show a promising multidisciplinary approach which can incorporate developments in biology, cognitive science, and ecology in testing movement hypotheses.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.