Abstract

Building on previous work that considered gravity to emerge from the collective behaviour of discrete, pre-geometric spacetime constituents, this work identifies these constituents with gravitons and rewrites their effective gravity-inducing interaction in terms of local variables for Schwarzschild–de Sitter scenarios. This formulation enables graviton-level simulations of entire emergent gravitational systems. A first simulation scenario confirms that the effective graviton interaction induces the emergence of spacetime curvature upon the insertion of a graviton condensate into a flat spacetime background. A second simulation scenario demonstrates that free fall can be considered to be fine-tuned towards a geodesic trajectory, for which the graviton flux, as experienced by a test mass, disappears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.