Abstract
We review recent results of emergent geometries in the BMN matrix model, a one-dimensional gauge theory considered as a non-perturbative formulation of M-theory on the plane-wave geometry. A key to understand the emergent geometries is the eigenvalue distribution of a BPS operator. Gauge-theory calculation shows that the BPS operator reproduces the corresponding supergravity solutions in the gauge/gravity duality and also brane geometries in the M-brane picture. At finite temperatures, these geometries should be realised in a non-trivial way. Monte Carlo simulations of this gauge theory revealed two types of phase transitions: the confinement/deconfinement transition and the Myers transition, which provide insights into the emergence of the geometries. Especially, the numerical results qualitatively agree with the critical temperature of the confinement/deconfinement transition predicted on the gravity side.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.