Abstract

We study the orientation flocking for the deterministic counterpart of a stochastic agent-based model introduced by Degond, Frouvelle and Merino-Aceituno in 2017, where the orientation is defined as a \begin{document}$ {\rm SO}(3) $\end{document} matrix. Their proposed model can be reduced to the other collective dynamics models such as the Lohe matrix model and the Viscek-type model as special cases. In this work, we study the emergent dynamics of the orientation flocking model in two frameworks. First, we present sufficient conditions leading to the orientation flocking when the natural frequency matrices are identical. To be precise, we prove that all orientation matrices asymptotically converge to the common one, and the spatial position diameter remains uniformly bounded. Second, we show the emergence of orientation-locked states for non-identical natural frequency matrices, that is, the difference of any two orientation matrices tends to the definite constant matrix. On the other hand, we establish the finite-in-time stability with respect to initial data of the proposed orientation flocking model. We also present the numerical results consistent with our rigorous analysis. Our work remains valid even for dimensions greater than three.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call