Abstract

A new class of gravity-matter models defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold are studied in some detail. These models involve an additional $R^2$ (square of the scalar curvature) term as well as scalar matter field potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry. Scale invariance is spontaneously broken upon integration of the equations of motion for the auxiliary volume-form degrees of freedom. After performing transition to the physical Einstein frame we obtain: (i) An effective potential for the scalar field with two flat regions which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (ii) For a definite parameter range the model possesses a non-singular "emergent universe" solution which describes an initial phase of evolution that precedes the inflationary phase; (iii) For a reasonable choice of the parameters the present model conforms to the Planck Collaboration data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call