Abstract

Future global warming is determined by both greenhouse gas emission pathways and Earth’s transient and equilibrium climate response to doubled atmospheric CO2. Energy-balance inference from the instrumental record typically yields central estimates for the transient response of around 1.3 K and the equilibrium response of 1.5–2.0 K, which is at the lower end of those from contemporary climate models. Uncertainty arises primarily from poorly known aerosol-induced cooling since the early industrialization era and a temporary cooling induced by evolving sea surface temperature patterns. Here we present an emergent constraint on post-1970s warming, taking advantage of the weakly varying aerosol cooling during this period. We derive a relationship between the transient response and the post-1970s warming in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We thereby constrain, with the observations, the transient response to 1.67 K (1.17–2.16 K, 5–95th percentiles). This is a 20% increase relative to energy-balance inference stemming from previously neglected upper-ocean energy storage. For the equilibrium climate sensitivity we obtain a best estimate of 2.83 K (1.72–4.12 K) contingent on the temporary pattern effects exhibited by climate models. If the real world’s surface temperature pattern effects are substantially stronger, then the upper-bound equilibrium sensitivity may be higher than found here. Warming in climate simulations since about 1970, when aerosol cooling showed little variation, constrains the transient climate response to doubled atmospheric CO2 levels to about 1.67 K, according to an analysis of this emergent constraint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call