Abstract
Any account of the emergence of classicality from quantum theory must address the fact that the quantum operators representing positions and momenta do not commute, whereas their classical counterparts suffer no such restrictions. To address this, we revive an old idea of von Neumann, and seek a pair of commuting operators X, P which are, in a specific sense, "close" to the canonical non-commuting position and momentum operators, x,p. The construction of such operators is related to the problem of finding complete sets of orthonormal phase space localized states, a problem severely limited by the Balian-Low theorem. Here these limitations are avoided by restricting attention to situations in which the density matrix is reasonably decohered (i.e., spread out in phase space).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.