Abstract

A laboratory experiment was performed to find out the potential bioaccumulation of metals (Al, Cu, Cd, Ni, Pb, Fe, Mn) in aquatic plants acting as natural biosorbents in the environment depending on the variation of water pH. Two plants were selected for the study: branched bur-reed—Sparganium erectum L., as a representative of emergent plants; and river water-crowfoot—Ranunculus fluitans Wimm., 1841, as a representative of submergent plants. The bioaccumulation of metals in plants relative to water (BCFW) was determined, and the metal pollution index (MPI) was calculated. The metal content in water and plants before the experiment was arranged in the following series of increasing values: Cd = Ni < Cu < Pb < Mn < Al < Fe (water) and Cd < Cu < Ni < Pb < Al < Fe < Mn (in both plants). The lowest concentration of cadmium was found in water both at the end and beginning of the experiment. In turn, aluminum level increased, and its concentration was the highest in both acidic and alkaline water. This suggests that aluminum is definitely more available to the organisms living in it under such conditions, and in higher concentrations may be a limiting factor for them. Bioaccumulation of metals (BCFW) in neutral and alkaline environments was higher in branched bur-reed, and in acidic conditions in river water-crowfoot. This may provide a basis for using specific plant species to selectively accumulate metals depending on the range of water pH. This is also supported by the MPI values, which indicate that they have a very high and often the highest impact on metal pollution levels. The observed variability of metals bioaccumulation against the condition of hydromacrophytes makes it possible to consider these plants as biosorbents used in constructed biological treatment plants, which, depending on the species placed there, can selectively absorb particular trace elements. The plants used in the experiment are common hydromacrophytes of Europe, so they can be used in the construction of artificial wetlands across the continent. The apparent diversity of metal accumulation in relation to hydromacrophytes indicates that this type of site can be inhabited by specific species, which can significantly improve the purification of natural or anthropogenic water reservoirs, i.e., those that are intended to perform a filtering function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.