Abstract

The AP1000 is two-loop 1100 MWe advanced pressurized water reactor (PWR) that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 30 years of operating PWR experience. The AP1000 final design certification was approved by the NRC in December, 2005. A total of 34 Emergency Operating Procedures (EOPs) for operation of the AP1000 simulator have been prepared based on the AP1000 Emergency Response Guidelines (ERGs), background information documents and detailed plant information. These include 28 EOPs at power and 6 EOPs during shutdown. The AP1000 ERGs were developed by using the generic ERGs for the low pressure reference PWR plant as a basis. The AP1000 design differences from the reference plant were reviewed and reflected in the process of developing operational steps in each ERG. The provisions of the AP1000 PRA were also reviewed and incorporated into the ERGs. Although the AP1000 design does not require operator actions for the first 72 hours after accidents, the operator actions with both safety-related and nonsafety-related equipment have an important role to mitigate the consequence of accidents. In the event of a steam generator tube rupture (SGTR), although the AP1000 is designed so that no operator actions are required to recover from the event, there are actions that can be taken by the operator to limit the release of radioactive effluents from the ruptured SG. These actions include isolation of the ruptured SG and depressurization of the reactor coolant system (RCS) to terminate primary-to-secondary leakage, restoring reactor coolant inventory to ensure adequate core cooling and plant pressure control. It is expected that these operator actions should be incorporated into the ERG to reduce the fission product release. To support the development of the AP1000 ERGs, several transient and accident analyses were performed. These include analyses for LOCA, post-LOCA cooldown and depressurization, passive safety system termination, SGTR and faulted SG isolation. These analyses results were incorporated into the ERG background information documents. In the event of SGTR, several cases were analyzed, including consideration of operator recovery actions. These cases were modeled using the best-estimate state-of-art RELAP5 code. The analyses results show that operator recovery actions are effective for SGTR to be placed under operator control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call