Abstract

Abstract Late-season weed emergence in California rice fields complicates decisions concerning the timing of control measures. The objective of this study was to predict the emergence of three problematic weed species in rice using thermal time models. Smallflower umbrella sedge, barnyardgrass, and bearded sprangletop seedlings were counted and removed daily at three locations across the Sacramento Valley rice-growing region in 2018. The accumulation of thermal time (growing degree days; GDD) commenced with the initial flooding of the fields at each location, utilizing the specific base temperatures corresponding to each species. The pattern of emergence as a function of GDD was modeled with a Weibull function. Root-mean-square values for comparing actual and model-predicted cumulative emergence values were 6% to 23%. Percent cumulative emergence initially increased rapidly for smallflower umbrella sedge and reached 90% emergence with accumulation of 13 GDD. Barnyardgrass emerged after smallflower umbrella sedge and reached 90% emergence with an accumulation of 124 GDD. Bearded sprangletop had a delay of 64 GDD compared to barnyardgrass to reach first emergence and reached 90% emergence at 215 GDD. The period of weed emergence at all field sites differed across the three species and led to a continuous spectrum of weed emergence over time. This study characterizes the emergence of three economically important rice weeds and provides useful information for the timing of weed management. Typical herbicide applications on the day of seeding may have less efficacy on the late-emerging weeds, causing reduced weed control. Delayed herbicide application, overlay of residual herbicides, or use of herbicides with longer residual activity are suggested to control late-emerging weeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call