Abstract

The search for Kitaev spin liquid states has recently broadened to include a number of honeycomb materials with integer spin moments. The qualitative difference with their spin-1/2 counterparts is the presence of single-ion anisotropy (SIA). This motivates our investigation of the effects of SIA on the ground state of the spin-1 Kitaev-Heisenberg (KH) model using the density-matrix renormalization group which allows construction of detailed phase diagrams around the Kitaev points. We demonstrate that positive out-of-plane SIA induces an in-plane vortex state without the need for off-diagonal interactions. Conversely, negative SIA facilitates the emergence of a state in the presence of antiferromagnetic Heisenberg interactions, whereas a state can emerge for ferromagnetic Heisenberg coupling. These findings, pertinent even for weak SIA, not only enhance our theoretical understanding of the spin-1 KH model but also suggest experimental prospects for observing these novel magnetic states in material realizations. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.