Abstract

Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

Highlights

  • Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain

  • Interest is shifting to the socalled topological crystalline insulators[26,27], which are different from standard topological insulators in that the gapless surface states are protected by mirror symmetry rather than by timereversal symmetry

  • We have studied the topological properties of TlBiS2 and TlSbS2 under strain

Read more

Summary

TECHNOLOGY QUANTUM PHYSICS

Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2. PSE Division, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia. Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. One, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the M points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator

Correspondence and requests for materials should be addressed to
Results
We first study the band structures and topological properties of
Discussion
Methods
Additional information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.