Abstract
To characterize a novel transposon Tn7533 carrying the tet(X2) gene in a tigecycline-resistant Acinetobacter pittii BM4623 of clinical origin. Gene knockout and in vitro cloning were used to verify the function of tet(X2). WGS and comparative genomic analysis were used to explore the genetic characteristics and molecular evolution of tet(X2). Inverse PCR and electroporation experiments were used to evaluate the excision and integration capabilities of Tn7533. A. pittii BM4623 belonged to a novel ST, ST2232 (Pasteur scheme). Knockout of tet(X2) in BM4623 restored its susceptibility to tigecycline. Cloning of the tet(X2) gene into Escherichia coli DH5α and Acinetobacter baumannii ATCC 17978 resulted in 16-fold or more increases in MICs of tigecycline. Sequence analysis showed that the region upstream of tet(X2) exhibited a high degree of diversity, while there was a 145 bp conserved region downstream of tet(X2). tet(X2) in BM4623 was located on a novel composite transposon Tn7533, which also contains multiple resistance genes including blaOXA-58. Tn7533 could be excised from the chromosome to form a circular intermediate and transferred into A. baumannii ATCC 17978 by electroporation. Our study demonstrates that tet(X2) is a determinant conferring clinical resistance to tigecycline in Acinetobacter species. The emergence of Tn7533 may lead to the potential dissemination of tigecycline and carbapenem resistance in Acinetobacter, which requires continuous monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.