Abstract

Jammed granular media and glasses exhibit spatial long-range correlations as a result of mechanical equilibrium. However, the existence of such correlations in the flowing matter, where the mechanical equilibrium is unattainable, has remained elusive. Here, we investigate this problem in the context of the percolation of interparticle forces in flowing granular media. We find that the flow rate introduces an effective long-range correlation, which plays the role of a relevant perturbation giving rise to a spectrum of varying exponents on a critical line as a function of the flow rate. Our numerical simulations along with analytical arguments predict a crossover flow rate [Formula: see text] below which the effect of induced disorder is weak and the universality of the force chain structure is shown to be given by the standard rigidity percolation. We also find a power-law behavior for the critical exponents with the flow rate [Formula: see text].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call