Abstract

Our aim in this paper is to enlighten the possibility to treat quantum mechanics as emergent from a kind of classical physical model, in spite of recent remarkable experiments demonstrating a violation of the Bell inequality. To proceed in a rigorous way, we use the methodology of ontic–epistemic modeling of physical phenomena. This methodology is rooted in the old Bild conception about theoretical and observational models in physics. This conception was elaborated in the fundamental works of Hertz, Boltzmann, and Schrodinger. Our ontic model (generating the quantum model) is of the random field type, prequantum classical statistical field theory (PCSFT). We present a brief review of its basic features without overloading the presentation by mathematical details. Then we show that the Bell inequality can be violated not only at the epistemic level, i.e., for observed correlations, but even at the ontic level, for classical random fields. We devote the important part of the paper to an analysis of the internal energy structure of prequantum random fields and their coupling with the background field of subquantum fluctuations. Finally, we present a unified picture of the microworld based on the composition of prequantum random fields from elementary fluctuations. Since quantum systems are treated as the symbolic representation of prequantum fields, this picture leads to a unifying treatment of all quantum systems as special blocks of elementary fluctuations carrying negligibly small energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call