Abstract

BackgroundAcaricide failure has been on the rise in the western and central cattle corridor of Uganda. In this study, we identified the tick species associated with acaricide failure and determined their susceptibility to various acaricide molecules used for tick control in Uganda.MethodsIn this cross sectional study, tick samples were collected and identified to species level from 54 purposively selected farms (from 17 districts) that mostly had a history of acaricide failure. Larval packet test was used to screen 31 tick populations from 30 farms for susceptibility at discriminating dose (DD) and 2 × DD of five panels of commercial acaricide molecules belonging to the following classes; amidine, synthetic pyrethroid (SP), organophosphate (OP) and OP-SP co-formulations (COF). Resistance was assessed based on World Health Organization criteria for screening insecticide resistance.ResultsOf the 1357 ticks identified, Rhipicephalus (Rhipicephalus) appendiculatus and Rhipicephalus (Boophilus) decoloratus were the major (95.6 %) tick species in farms sampled. Resistance against SP was detected in 90.0 % (27/30) of the tick populations tested. Worryingly, 60.0 % (18/30) and 63.0 % (19/30) of the above ticks were super resistant (0 % mortality) against 2 × DD cypermethrin and deltamethrin, respectively. Resistance was also detected against COF (43.3 %), OP chlorfenvinphos (13.3 %) and amitraz (12.9 %). In two years, 74.1 % (20/27) of the farms had used two to three acaricide molecules, and 55.6 % (15/27) rotated the molecules wrongly. Multi-acaricide resistance (at least 2 molecules) was detected in 55.2 % (16/29) of the resistant Rhipicephalus ticks and significantly associated with R. decoloratus (p = 0.0133), use of both SP and COF in the last 2 years (p < 0.001) and Kiruhura district (p = 0.0339). Despite emergence of amitraz resistance in the greater Bushenyi area, it was the most efficacious molecule against SP and COF resistant ticks.ConclusionThis study is the first to report emergence of super SP resistant and multi-acaricide resistant Rhipicephalus ticks in Uganda. Amitraz was the best acaricide against SP and COF resistant ticks. However, in the absence of technical interventions, farmer-led solutions aimed at troubleshooting for efficacy of multitude of acaricides at their disposal are expected to potentially cause negative collateral effects on future chemical tick control options, animal welfare and public health.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1278-3) contains supplementary material, which is available to authorized users.

Highlights

  • Acaricide failure has been on the rise in the western and central cattle corridor of Uganda

  • Amongst the Rhipicephalus, 55.1 % (715/1297) were the one host ticks R. decoloratus compared to 44.9 % (582/1297) three host tick Rhipicephalus appendiculatus

  • Our results further highlight the importance of routine monitoring of tick acaricide resistance for early detection and intervention especially in countries where veterinary drugs/acaricides are liberalized

Read more

Summary

Introduction

Acaricide failure has been on the rise in the western and central cattle corridor of Uganda. We identified the tick species associated with acaricide failure and determined their susceptibility to various acaricide molecules used for tick control in Uganda. Commercial cattle farmers rely extensively on acaricides for chemical control of ticks. This has created a huge demand and market for acaricides in Uganda. The increased cases of farmers’ complaints on acaricide failure, especially in western and central cattle corridors, raises serious suspicion of possible emergence of acaricide resistant ticks in the country. The high costs of genomic approaches leaves LPT as the most used tool for routine acaricide resistance screening. The current study established the common species of ticks associated with acaricide failure, acaricide use practices and determined the acaricide resistance profile of the ticks using LPT

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call