Abstract

Disturbances in self-experience are a central feature of schizophrenia and its study can enhance phenomenological understanding and inform mechanisms underlying clinical symptoms. Self-experience involves the sense of self-presence, of being the subject of one's own experiences and agent of one's own actions, and of being distinct from others. Self-experience is traditionally assessed by manual rating of interviews; however, natural language processing (NLP) offers automated approach that can augment manual ratings by rapid and reliable analysis of text. We elicited autobiographical narratives from 167 patients with schizophrenia or schizoaffective disorder (SZ) and 90 healthy controls (HC), amounting to 490 000 words and 26 000 sentences. We used NLP techniques to examine transcripts for language related to self-experience, machine learning to validate group differences in language, and canonical correlation analysis to examine the relationship between language and symptoms. Topics related to self-experience and agency emerged as significantly more expressed in SZ than HC (P < 10-13) and were decoupled from similarly emerging features such as emotional tone, semantic coherence, and concepts related to burden. Further validation on hold-out data showed that a classifier trained on these features achieved patient-control discrimination with AUC = 0.80 (P < 10-5). Canonical correlation analysis revealed significant relationships between self-experience and agency language features and clinical symptoms. Notably, the self-experience and agency topics emerged without any explicit probing by the interviewer and can be algorithmically detected even though they involve higher-order metacognitive processes. These findings illustrate the utility of NLP methods to examine phenomenological aspects of schizophrenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.