Abstract

We report on emergence of two-dimensional conduction and ferromagnetism at the interface of MnTe thin films and InP substrates. The MnTe/InP heterostructures grown by molecular-beam epitaxy show thickness-independent sheet conductivity above a critical thickness of about 20 nm, indicating the formation of a conducting layer at the interface. Furthermore, the ferromagnetic behavior is confirmed by both magnetization and anomalous Hall effect measurements below a critical temperature of 270 K. The critical temperature is also independent of the thickness. By the investigation of the atomic structure with transmission electron microscopy, we observe a structural anomaly near the interface which consists of an antiprism-type Mn network unlike a prism-type Mn network of conventional MnTe. The band structure calculation shows that the antiprism-type MnTe can host metallic conduction and ferromagnetism, which is consistent with the present experimental results. The interface engineering based on the chalcogenide compound will develop a new arena for designing the emergent low dimensional conduction and magnetism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.