Abstract

To exemplify the existence of hidden strange nonchaotic attractors (HSNAs) and transition mechanism, we consider a rational memristive map with additional force. We find that the four-torus bifurcates into the eight-torus through torus doubling as a function of the control parameter. Following that, the formation of strange nonchaotic attractors occurs when increasing the control parameter. As a result, it is clear that the suggested rational maps reach hidden chaotic attractors via HSNAs through the route of torus doubling to torus breakdown. The obtained dynamical transitions are validated further using bifurcation analysis and the largest Lyapunov exponents. In particular, the obtained HSNAs are confirmed through distinct statistical measures including 0–1 test and singular continuous spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.