Abstract

Faceted grain boundaries, where grain boundary area is increased in the name of producing low-energy segments, can exhibit new and unexpected migration trends. For example, several faceted Ʃ3 boundaries have demonstrated anti-thermal and thermally damped mobility. Ʃ11 ⟨110⟩ tilt boundaries represent another promising but relatively unexplored set of interfaces, with a (113) low-energy plane that can lead to faceting. In this study, molecular dynamics simulations are used to study grain boundary migration of an asymmetric Ʃ11 ⟨110⟩ grain boundary in two face centered cubic metals. Mobility of this boundary in Cu is strongly dependent on the direction of the applied driving force. The mobility anisotropy generally becomes smaller, but does not disappear completely, as temperature is increased. In contrast, the same boundary in Al demonstrates similar mobilities in either direction, illustrating that the anisotropic mobility phenomenon is material-dependent. Finally, relationships between stacking fault energy, facet junction defect content, and boundary crystallography are uncovered that may inform future studies of faceted grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.