Abstract
We consider neuronal network models with plasticity and randomness and show that complicated global structures can evolve even in the presence of simple local update rules. Our computational model generates several interesting features; e.g. orientation- and direction-selectivity when the inputs are arranged in a manner analogous to a visual field. Our model is a discrete-time Markov chain which contains multiple excitatory and inhibitory input neurons, and has as outputs stochastic leaky integrate-and-fire neurons; the system evolves through the plasticity of the synapses, updated according to a spike-timing dependent plasticity (STDP) rule. We observe that the network is capable of rich properties (e.g. bifurcation, various forms of stability, etc) that depend on the statistics of the stimulus and the coupling parameters in the network. Since we are using a mechanism that can be easily modeled mathematically, we believe that this approach provides a well-positioned balance between neuro-biological relevance and theoretical tractability.
Highlights
We consider neuronal network models with plasticity and randomness and show that complicated global structures can evolve even in the presence of simple local update rules
Emergence of direction- and orientationselectivity and othercomplex structures from stochastic neuronal networks evolving under spike-timing dependent plasticity (STDP)
Our model is a discrete-time Markov chain which contains multiple excitatory and inhibitory input neurons, and has as outputs stochastic leaky integrate-and-fire neurons; the system evolves through the plasticity of the synapses, updated according to a spike-timing dependent plasticity (STDP) rule
Summary
We consider neuronal network models with plasticity and randomness and show that complicated global structures can evolve even in the presence of simple local update rules. Emergence of direction- and orientationselectivity and othercomplex structures from stochastic neuronal networks evolving under STDP From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.