Abstract

We generalize the Bak-Sneppen model of coevolution to a game model for evolutionary dynamics which provides a natural way for the emergence of cooperation. Interaction between members is mimicked by a prisoner's dilemma game with a memoryless stochastic strategy. The fitness of each member is determined by the payoffs π of the games with its neighbors. We investigate the evolutionary dynamics using a mean-field calculation and Monte Carlo method with two types of death processes, fitness-dependent death and chain-reaction death. In the former, the death probability is proportional to e^{-βπ} where β is the "selection intensity." The neighbors of the death site also die with a probability R through the chain-reaction process invoked by the abrupt change of the interaction environment. When a cooperator interacts with defectors, the cooperator is likely to die due to its low payoff, but the neighboring defectors also tend to disappear through the chain-reaction death, giving rise to an assortment of cooperators. Owing to this assortment, cooperation can emerge for a wider range of R values than the mean-field theory predicts. We present the detailed evolutionary dynamics of our model and the conditions for the emergence of cooperation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call