Abstract

We present the evolution of the simple system of Meinhardt implemented in both static or dynamic two-dimensional structures of almost-squared cells. In a static structure of 8 × 4 = 32 to 128 × 128 = 16 384 cells, the pattern observed is periodic. An algorithm allows us to divide the cells following the greater size, and to define a dynamic structure. The implementation of the same Meinhardt system in this dynamic structure varying from 32 to 16 384 cells and a context of the same genotypic complexity for the model provides aperiodic patterns, with a higher phenotypic complexity than those observed in static structures, while the number of computations is comparable. We define that emergence occurs each time the ratio of phenotypic/genotypic complexities increases. To cite this article: J.-D. Rouault, C. R. Biologies 328 (2005).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.