Abstract

An empirical framework for studying the way vacuum fluctuations in a Fabry-Perot cavity produce collective light-matter hybrid states (polariton states) is reported. The reason that the Tavis-Cummings model, where a single mode of the radiation field couples to all the molecules, succeeds is discussed in terms of the strong phase correlation of the vacuum fluctuations in the cavity, which produces a single effective cavity mode (ECM). The model is used to study the onset of the collective state, or "superradiant phase", for ensembles of molecules with significant disorder in their transition energies, as a function of cavity strength factor, from low Q cavities to high Q cavities. A key result is the quantification of the coherence of the ensemble of the lowest energy eigenstate. This is assessed, primarily, using an entropy distance measure. The statistical model provides a physical intuition for the formation of coherence of polariton states when the collective coupling is strong enough that they dominate over the tail of the dark-state density-of-states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.