Abstract

The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time-kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time-kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time-kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call