Abstract

We study the dynamics of a biophysically motivated slow–fast FitzHugh–Rinzel (FHR) model neurons in understanding the complex dynamical behavior of neural computation. We discuss the mathematical frameworks of diverse excitabilities and repetitive firing responses due to the applied stimulus using the slow–fast system. The results focus on the multiple time scale dynamics that include canard phenomenon induced mixed mode oscillations (MMOs) and mixed mode bursting oscillations (MMBOs). The bifurcation structure of the system is examined with injected current stimulus as the relevant parameter. We use the folded node theory to study the canards near the fold points. Further, we demonstrate the homoclinic bifurcation and the transition route to chaos through MMOs. It helps us in understanding the fundamentals of such complex rich neuronal responses. To show the chaotic nature in certain parameter regime, we compute the Lyapunov spectrum as a function of time and predominant parameter, I, that establishes our findings. Finally, we conclude that our observed results may have major significance and discuss the potential applications of MMOs in neural dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call