Abstract

Animal locomotion activity relies on the generation and control of coordinated periodic actions in a central pattern generator (CPG). A core element of many CPGs responsible for the rhythm generation is a pair of reciprocally coupled neuron populations. Recent interest in the development of highly reduced models of CPG networks is motivated by utilization of CPG models in applications for biomimetic robotics. This paper considers the use of a reduced model in the form of a discrete time system to study the emergence of antiphase bursting activity in two reciprocally coupled populations evoked by the postinhibitory rebound effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.