Abstract

A comprehensive model of speech processing and speech learning has been established. The model comprises a mental lexicon, an action repository and an articulatory-acoustic module for executing motor plans and generating auditory and somatosensory feedback information (Kröger and Cao, 2015). In this study a “model language” based on three auditory and motor realizations of 70 monosyllabic words has been trained in order to simulate early phases of speech acquisition (babbling and imitation). We were able to show that (i) the emergence of phonetic-phonological features results from an increasing degree of ordering of syllable representations within the action repository and that (ii) this ordering or arrangement of syllables is mainly shaped by auditory information. Somatosensory information helps to increase the speed of learning. Especially consonantal features like place of articulation are learned earlier if auditory information is accompanied by somatosensory information. It can be concluded that somatosensory information as it is generated already during the babbling and the imitation phase of speech acquisition is very helpful especially for learning features like place of articulation. After learning is completed acoustic information together with semantic information is sufficient for determining the phonetic-phonological information from the speech signal. Moreover it is possible to learn phonetic-phonological features like place of articulation from auditory and semantic information only but not as fast as when somatosensory information is also available during the early stages of learning.

Highlights

  • Speaking starts with a message which the speaker wants to communicate, followed by an activation of concepts

  • An unclear node at phonetic feature map (P-MAP) level is a node which represents at least two training items belonging to two different syllables or words

  • An unclear node may lead to a failure in speech processing for these words, because they may be confused in speech perception as well as in speech production

Read more

Summary

Introduction

Speaking starts with a message which the speaker wants to communicate, followed by an activation of concepts. It is hypothesized that a hypermodal representation of these items (cf Feng et al, 2011; Lametti et al, 2012) is stored in the action repository in the form of a cortical neural map which indicates an ordering of syllables with respect to syllable structure as well as with respect to phonetic features of the consonants and vowels building up each syllable (phonetic feature map, see Kröger et al, 2009; Kröger and Cao, 2015). This model has been embodied as quantitative computer model leading to results that approximate observed behavior but it is unclear how realistic the model is because some of its assumptions (especially the one concerning feature maps) are still not verified on the basis of neurophysiological findings

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call