Abstract

ObjectivesLittle is known about how additional second-line drug resistance emerges during multidrug-resistant tuberculosis (MDR-TB) treatment. The present study aimed to investigate the influence of microevolution, exogenous reinfection and mixed infection on second-line drug resistance during the recommended 2-year MDR-TB treatment. MethodsIndividuals with MDR-TB were enrolled between 2013 and 2016 in a multicentre prospective observational cohort study and were followed up for 2 years until treatment completion. Whole-genome sequencing (WGS) was applied for serial Mycobacterium tuberculosis isolates from study participants throughout the treatment, to study the role of microevolution, exogenous reinfection and mixed infection in the development of second-line drug resistance. ResultsOf the 286 enrolled patients with MDR-TB, 63 (22.0%) M. tuberculosis isolates developed additional drug resistance during the MDR-TB treatment, including 5 that fulfilled the criteria of extensively drug-resistant TB. By comparing WGS data of serial isolates retrieved from the patients throughout treatment, 41 (65.1%) of the cases of additional second-line drug resistance were the result of exogenous reinfection, 18 (28.6%) were caused by acquired drug resistance, i.e. microevolution, while the remaining 4 (6.3%) were caused by mixed infections with drug-resistant and drug-susceptible strains. In multivariate analysis, previous TB treatment (adjusted hazard ratio (aHR) 2.51, 95% CI 1.51–4.18), extensive disease on chest X-ray (aHR 3.39, 95% CI 2.03–5.66) and type 2 diabetes mellitus (aHR 4.00, 95% CI 2.22–7.21) were independent risk factors associated with the development of additional second-line drug resistance. ConclusionsA large proportion of additional second-line drug resistance emerging during MDR-TB treatment was attributed to exogenous reinfection, indicating the urgency of infection control in health facilities as well as the need for repeated drug susceptibility testing throughout MDR-TB treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.