Abstract

ABSTRACTThe occurrence of transferable tigecycline resistance determinants, tmexCD1-toprJ1, tmexCD2-toprJ2, tmexCD3-toprJ1b, and multiple tet(A) and tet(X) variants, presents an unprecedented challenge to clinical therapeutic options. tmexCD-toprJ-like gene clusters can mediate multidrug resistance and have been detected in a variety of bacteria. Here, we characterized the fourth tmexCD-toprJ-like gene cluster, tmexCD4-toprJ4, identified on untypeable plasmids of Klebsiella quasipneumoniae and Enterobacter roggenkampii isolated from chicken meat and environmental samples from farm markets, respectively. TMexCD4-TOprJ4 was closely related (92 to 99% amino acid identity) to TMexCD1-TOprJ1, TMexCD2-TOprJ2, and TMexCD3-TOprJ1. Phylogenetic analysis revealed that tmexCD4-toprJ4 was not in the same branch as the other three variants. Expression of tmexCD4-toprJ4 increased tigecycline efflux in Escherichia coli and resulted in a 4- to 8-fold increase in MICs of tigecycline in E. coli and Klebsiella pneumoniae. Moreover, tmexCD4-toprJ4 can act synergistically with its upstream gene tet(A) to reduce the susceptibility of E. coli and K. pneumoniae strains to tigecycline. The tmexCD4-toprJ4-containing plasmid is a novel plasmid type and can be transferred to E. coli and K. pneumoniae only via electrotransformation. The increasing emergence of plasmid-mediated tigecycline resistance gene clusters suggests that the spread of tmexCD-toprJ-like gene clusters requires widespread attention.IMPORTANCE The plasmid-mediated tigecycline resistance gene cluster tmexCD1-toprJ1 and other variants have been detected in a variety of strains from multiple sources, including human-derived strains. In addition to tigecycline, these tmexCD-toprJ-like gene clusters reduce susceptibility of the host strain to many other antimicrobials. Here, we identified tmexCD4-toprJ4 in K. quasipneumoniae and E. roggenkampii, suggesting that this gene cluster is already present in the human-associated environment and the risk of transmission to humans is increased. Monitoring tigecycline-resistant Gram-negative bacteria is essential for understanding and addressing the spread of this gene cluster in agriculture and health care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.