Abstract

A one-dimensional long-range model of classical rotators with an extended degree of complexity, as compared to paradigmatic long-range systems, is introduced and studied. Working at constant density, in the thermodynamic limit one can prove the statistical equivalence with the Hamiltonian mean-field (HMF) model and α-HMF: a second-order phase transition is indeed observed at the critical energy threshold . Conversely, when the thermodynamic limit is performed at infinite density (while keeping the length of the hosting interval L constant), the critical energy is modulated as a function of L. At low energy, a self-organized collective crystal phase is reported to emerge, which converges to a perfect crystal in the limit . To analyze the phenomenon, the equilibrium one-particle density function is analytically computed by maximizing the entropy. The transition and the associated critical energy between the gaseous and the crystal phase is computed. Molecular dynamics show that the crystal phase is apparently split into two distinct regimes, depending on the energy per particle ε. For small ε, particles are exactly located on the lattice sites; above an energy threshold , particles can travel from one site to another. However, does not signal a phase transition but reflects the finite time of observation: the perfect crystal observed for corresponds to a long-lasting dynamical transient, whose lifetime increases when the approaches zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.