Abstract
The origin of the genetic code in the context of an RNA world is a major problem in the field of biophysical chemistry. In this paper, we describe how the polymerization of amino acids along RNA templates can be affected by the properties of both molecules. Considering a system without enzymes, in which the tRNAs (the translation adaptors) are not loaded selectively with amino acids, we show that an elementary translation governed by a Michaelis-Menten type of kinetics can follow different polymerization regimes: random polymerization, homopolymerization and coded polymerization. The regime under which the system is running is set by the relative concentrations of the amino acids and the kinetic constants involved. We point out that the coding regime can naturally occur under prebiotic conditions. It generates partially coded proteins through a mechanism which is remarkably robust against non-specific interactions (mismatches) between the adaptors and the RNA template. Features of the genetic code support the existence of this early translation system.
Highlights
A major issue about the origin of the genetic system is to understand how coding rules were generated before the appearance of a family of coded enzymes, the aminoacyl-tRNA synthetases
Consider an elementary translation system constituted by RNA templates made up of two types of codons {I, II}, tRNAs with anticodons complementary to these codons, and two types of amino acids {1, 2}
The rates of aminoacylation will follow the relative concentrations of these amino acids in solution, [aa1] and [aa2]
Summary
A major issue about the origin of the genetic system is to understand how coding rules were generated before the appearance of a family of coded enzymes, the aminoacyl-tRNA synthetases. The synthetases establish the code by attaching specific amino acids onto the 39 ends of their corresponding tRNAs, a two-step process called aminoacylation [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.