Abstract
In order to elucidate how structural heterogeneities affect the aftershock decay rate, we examine the aftershock sequences produced by a slider‐block model of seismicity. In this model, the geometry of the seismic zone is the only free parameter and all aspects of the system are known. The power law aftershock decay rate holds only for smooth faults. A band‐limited power law emerges at intermediate fault complexity. For rough faults, only a transient regime toward an exponential decay is observed. In all fault geometries examined, a band‐limited power law model fits the synthetic aftershock decay rate better than the Modified Omori Law. Then, as the connected seismic elements form a simpler localised surface, we show that the power law aftershock decay rate extends over longer time, and that the power law exponent increases. These results support the inference that the correlation time of the power law aftershock decay rate increases as the deformation localises along dominant major faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.