Abstract

We study dynamics in ensembles of identical excitable units with global repulsive interaction. Starting from active rotators with additional higher order Fourier modes in on-site dynamics, we observe, at sufficiently strong repulsive coupling, large-scale collective oscillations in which the elements form two separate clusters. Transitions from quiescence to clustered oscillations are caused by global bifurcations involving the unstable clustered steady states. For clusters of equal size, the scenarios evolve either through simultaneous formation of two heteroclinic trajectories or through two simultaneous saddle-node bifurcations on invariant circles. If the sizes of clusters differ, two global bifurcations are separated in the parameter space. Stability of clusters with respect to splitting perturbations depends on the kind of higher order corrections to on-site dynamics; we show that for periodic oscillations of two equal clusters the Watanabe-Strogatz integrability marks a change of stability. By extending our studies to ensembles of voltage-coupled Morris-Lecar neurons, we demonstrate that similar bifurcations and switches in stability occur also for more elaborate models in higher dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call