Abstract

Based on the modelling of quantum systems with the aid of (classical) non-equilibrium thermodynamics, both the emergence and the collapse of the superposition principle are understood within one and the same framework. Both are shown to depend in crucial ways on whether or not an average orthogonality is maintained between reversible Schrödinger dynamics and irreversible processes of diffusion. Moreover, the said orthogonality is already in full operation when dealing with a single free Gaussian wave packet. In an application, the quantum mechanical “decay of the wave packet” is shown to simply result from sub-quantum diffusion with a specific diffusivity varying in time due to a particle’s changing thermal environment. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet, as well as Born’s rule, are thus all derived solely from classical physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.