Abstract

In space plasmas, particle distributions are often observed having high energy tails and are well fitted by kappa distribution function. However, in auroral region electrons are expected to be accelerated mainly along the magnetic field lines and one may expect Maxwellian behaviour in perpendicular direction. Therefore, in the present study propagation characteristics of electromagnetic electron cyclotron (EMEC) waves is studied by employing kappa-Maxwellian distribution function for energetic trapped electrons in auroral region. Real frequency and the growth rate expressions have been solved numerically for kappa-Maxwellian plasma and then analyzed by considering the effect of different plasma parameters for wide range of auroral altitudes. The numerical results obtained show that growth rate increases with the increase in ratio \({\omega_{pe}} / {\varOmega_{e}}\), plasma beta, temperature anisotropy \({T_{\bot}} / {T_{\parallel}}\) and trapped electron drift speed but decreases when superthermal electron population increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.