Abstract

Precision medicine based on personalized genomics provides promising strategies to enhance the efficacy of molecular-targeted therapies. However, the clinical effectiveness of drugs has been severely limited due to genetic variations that lead to drug resistance. Predicting the impact of missense mutations on clinical drug response is an essential way to reduce the cost of clinical trials and understand genetic diseases. Here, we present Emden, a novel method integrating graph and transformer representations that predicts the effect of missense mutations on drug response through binary classification with interpretability. Emden utilized protein sequences-based features and drug structures as inputs for rapid prediction, employing competitive representation learning and demonstrating strong generalization capabilities and robustness. Our study showed promising potential for clinical drug guidance and deep insight into computer-assisted precision medicine. Emden is freely available as a web server at https://www.psymukb.net/Emden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.