Abstract

A noise-assisted approach in conjunction with multivariate empirical mode decomposition (MEMD) algorithm is proposed for the computation of empirical mode decomposition (EMD), in order to produce localized frequency estimates at the accuracy level of instantaneous frequency. Despite many advantages of EMD, such as its data driven nature, a compact decomposition, and its inherent ability to process nonstationary data, it only caters for signals with a sufficient number of local extrema. In addition, EMD is prone to mode-mixing and is designed for univariate data. We show that the noise-assisted MEMD (NA-MEMD) approach, which utilizes the dyadic filter bank property of MEMD, provides a solution to the above problems when used to calculate standard EMD. The method is also shown to alleviate the effects of noise interference in univariate noise-assisted EMD algorithms which directly add noise to the data. The efficacy of the proposed method, in terms of improved frequency localization and reduced mode-mixing, is demonstrated via simulations on electroencephalogram (EEG) data sets, over two paradigms in brain-computer interface (BCI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.