Abstract

In this paper, an adaptive, non-linear, analytical methodology is proposed in order to quantitatively evaluate the instantaneous phase-synchrony dynamics in epilepsy patients. A group of finite neuronal oscillators is extracted from a multichannel electrocorticographic (ECoG) data, using the empirical mode decomposition (EMD). The instantaneous phases of the extracted oscillators are measured using the Hilbert transform in order to be utilized in the mean-phase coherence analysis. Finally, the dynamical evolution of phase-synchrony among the extracted neuronal oscillators within 1-600 Hz frequency range is assessed using eigenvalue decomposition. A different phasesynchrony dynamics was observed in two patients with frontal vs. temporal lobe epilepsy, as their seizures evolve. However, experimental results demonstrated a hypersynchrony level at seizure offset for both types of epilepsy during the ictal periods. This result suggests that hypersynchronization of the epileptic network may be a crucial, self-regulatory mechanism by which the brain terminate seizures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call