Abstract
Macromolecular complexes are intrinsically flexible and often challenging to purify for structure determination by single particle cryoEM. Such complexes may be studied using cryo-electron tomography combined with sub-tomogram alignment and classification, which in exceptional cases reaches sub-nanometer resolution, yielding insight into structure-function relationships. Extending this approach to specimens that exhibit conformational or compositional heterogeneity, and that may be present at low abundance, remains challenging. To address this challenge, we developed emClarity (https://github.com/bHimes/emClarity/wiki), a GPU-accelerated image processing package, which features an iterative tomographic tilt-series refinement algorithm using sub-tomograms as fiducial markers and a 3D-samping function compensated, multi-scale Principle Component Analysis classification method. We demonstrate substantial improvements in the resolution of maps and in the separation of different functional states of macromolecular complexes, compared to those generated using current state-of-the-art software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.