Abstract

We present a new technique to investigate electromagnetic compatibility/electromagnetic interference (EMC/EMI) interactions in high-speed transmission lines on the chip level. The time-domain method is based on the different nature of the problem in conductors and semiconductors, compared to the insulating media that separate them. Therefore, the static problem in the silicon oxide is separated from the diffusion problem in conductors. The latter one is solved by an efficient DuFort-Frankel technique, while the static problem is solved in a coarse finite element method (FEM) mesh. In each step, the two problems are appropriately coupled by means of the interface conditions. The time-domain nature of this method permits the use of proper fast Fourier transform (FFT)-based postprocessing procedures to calculate the per unit length parameters in a fast and efficient manner

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.