Abstract

Despite that silver (Ag) is among the most studied nanomaterials (NM) in environmental species and Ag’s embryotoxicity is well known, there are no studies on Ag NMs embryotoxicity in soil invertebrates. Previous Full Life Cycle (FLC) studies in Enchytraeus crypticus, a standard soil invertebrate, showed that Ag materials decreased hatching success, which was confirmed to be a hatching delay effect for silver nitrate (AgNO3) and mortality for Ag NM300K. In the present study, we aimed to investigate if the impact of Ag takes place during the embryonic development, using histology and immunohistochemistry. E. crypticus cocoons were exposed to a range of concentrations of Ag NM300K (0–10–20–60–115 mg Ag/kg) and AgNO3 (0–20–45–60–96 mg Ag/kg) in LUFA 2.2 soil, in an embryotoxicity test, being sampled at days 1, 2, 3 and 6 (3, 4, 5 and 7 days after cocoon laying). Measured endpoints included the number of embryonic structures, expression of transferrin receptor (TfR) and L type calcium channels (LTCC) through histological and immunohistochemistry analysis, respectively. Results confirmed that Ag materials affected the embryonic development, specifically at the blastula stage (day 3). The expression and localization of TfR in E. crypticus was shown in the teloblasts cells, although this transcytosis mechanism was not activated. Ag affected calcium (Ca) metabolism during embryonic development: for AgNO3, LTCC was initially activated, compensating the impact, for Ag NM300K, LTCC was not activated, hence no Ca balance, with irreversible consequences, i.e. terminated embryonic development. An Adverse Outcome Pathway was drafted, integrating the mechanisms here discovered with previous knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.