Abstract
It has been demonstrated in rats that embryonic striatal grafts placed in the excitotoxically lesioned striatum establish neuronal connections with the host globus pallidus. In order to determine whether the morphologically verified connections between the grafts and host are functional, the present study investigated the effects of embryonic striatal grafts on changes in the neuronal activity of the globus pallidus in rats with quinolinic acid-induced striatal lesions. The activity of pallidal neurons was determined by use of quantitative cytochrome oxidase histochemistry and an electrophysiological technique. Striatal lesions induced an increase in both the cytochrome oxidase activity and the spontaneous firing rate, of the globus pallidus ipsilateral to the lesions. Grafts derived from the lateral ganglionic eminence, but not the medial ganglionic eminence, reversed the lesion-induced increase in the cytochrome oxidase activity of the globus pallidus with concomitant reduction of apomorphine-induced rotational asymmetry. The lateral ganglionic eminence grafts also attenuate the increase in the firing rate of pallidal neurons in rats with striatal lesions. The present results provide evidence that striatal lesions lead to the loss of a tonic inhibitory input to the globus pallidus with consequent increase in the activity of pallidal neurons, and that intrastriatal striatal grafts reverse the altered activity of pallidal neurons. The findings strongly suggest that embryonic striatal grafts functionally repair the damaged striatopallidal pathway
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.