Abstract

SummaryMaintaining genomic integrity during DNA replication is essential for stem cells. DNA replication origins are licensed by the MCM2–7 complexes, with most of them remaining dormant. Dormant origins (DOs) rescue replication fork stalling in S phase and ensure genome integrity. However, it is not known whether DOs exist and play important roles in any stem cell type. Here, we show that embryonic stem cells (ESCs) contain more DOs than tissue stem/progenitor cells such as neural stem/progenitor cells (NSPCs). Partial depletion of DOs does not affect ESC self-renewal but impairs their differentiation, including toward the neural lineage. However, reduction of DOs in NSPCs impairs their self-renewal due to accumulation of DNA damage and apoptosis. Furthermore, mice with reduced DOs show abnormal neurogenesis and semi-embryonic lethality. Our results reveal that ESCs are equipped with more DOs to better protect against replicative stress than tissue-specific stem/progenitor cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.