Abstract

Arthrogryposis multiplex congenita (AMC) is a heterogeneous syndrome where multiple joints have reduced range of motion due to contracture formation prior to birth. A common cause of AMC is reduced embryonic movement in utero. This reduction in embryonic movement can perturb molecular mechanisms and signaling pathways involved in the formation of joints during development. The absence of mechanical stimuli can impair joint cavitation, resulting in joint fusion, and ultimately eliminate function. In turn, mechanical stimuli are critical for proper joint formation during development and for mitigating AMC. Studies in experimental animal models have provided a greater understanding on the molecular pathophysiology of congenital contracture formation as a consequence of embryonic immobilization. Elucidation of how the mechanical signaling environment is transduced to initiate a biological response will be necessary to gain a deeper understanding of how mechanical stimuli are intertwined in the molecular regulation of joint development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call