Abstract
l-Carnitine plays a crucial role in uptake and subsequent β-oxidation of long-chain fatty acids in the mitochondria. Placental trophoblast cells oxidize long-chain fatty acids for energy production. Here we present data showing that l-carnitine deficiency due to a defect in the carnitine transporter OCTN2 (SLC22A5) in a mouse model leads to embryonic lethality. Placental levels of l-carnitine are reduced to <10% of normal and deficiency of l-carnitine is associated with markedly reduced expression of several growth factors and transforming growth factor β (TGF-β) genes. This report links for the first time reduced l-carnitine levels in the placenta to embryonic lethality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.