Abstract

The synthesis of embryonic (zeta, epsilon), fetal (alpha, gamma), and adult (beta) globin was evaluated in human yolk sacs (YS) and livers at different ontogenic stages (i.e., from 6 through 10-12 wk of age) by means of analytical isoelectric focusing. Globin production was comparatively evaluated in vivo (i.e., in directly labeled erythroblasts from YS and liver) and in vitro [i.e., in erythroid bursts generated in culture by erythroid burst-forming units (BFU-E) from the same erythropoietic tissues]. Erythroid bursts generated in vitro by BFU-E from 6-wk livers and YS show essentially a "fetal" globin synthetic pattern: this is in sharp contrast to the "embryonic" pattern in corresponding liver and YS erythroblasts directly labeled in vivo. The invitro phenomenon suggests that (i) 6-wk BFU-E constitute a new generation of progenitors, which have already switched from an embryonic to a fetal program, and/or (ii) expression of their fetal program is induced by unknown in vitro factor(s), which may underlie the in vivo switch at later ontogenic stages. It is emphasized that 6- to 7-wk BFU-E are endowed with the potential for in vitro synthesis of not only epsilon- and gamma-chains but also some beta-globin. In general, we observed an inverse correlation between the levels of epsilon- and beta-chain synthesis. These results, together with previous studies on fetal, perinatal, and adult BFU-E, are compatible with models suggesting that in ontogeny the chromatin configuration is gradually modified at the level of the non-alpha gene cluster, thus leading to a 5'----3' activation of globin genes in a balanced fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call