Abstract
IntroductionEmbryonic exposure to ethanol leads to a condition of physical, behavioral, and cognitive deficiencies named fetal alcohol spectrum disorders (FASD). The most severe variations are in fetal alcohol syndrome (FAS), which is easier to diagnose and not studied in animal models. On the other side, the pFAS (partial fetal alcohol syndrome) includes cases of alcohol‐related congenital disabilities and neurodevelopmental disorder with an inconclusive diagnosis. In recent years, the zebrafish has become a valuable model to study FASD and its variations.MethodsThis study characterizes the zebrafish embryonic and larval development after low and moderate ethanol concentration exposure. Fish eggs were exposed to 0.0%, 0.25%, 0.5%, and 1.0% ethanol at 24 hr postfertilization, and embryonic development was observed every 8 hr up to 120 hpf. It evaluated movements, phenotypic abnormalities, hatching, cardiac function and heartbeat frequency, larvae length at 120 hpf, and the apoptotic cells' fluorescence stained with acridine orange.ResultsEmbryonic exposure to 0.5% and 1% ethanol presented reduced body size, decreased heartbeat rate, higher numbers of apoptotic cells, and hatching time differences.ConclusionsOur results suggest any ethanol exposure during embryogenesis can be harmful and reinforces zebrafish as a suitable model for fetal alcohol spectrum disorders (FASD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.